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Efficient Finite Element Analysis of
Waveguides with Lossy Inhomogeneous
Anisotropic Materials Characterized by

Arbitrary Permittivity and Permeability Tensors
Luis Valor and Juan Zapata

Abstract-This paper presents a new finite element formulation
for solving arbitrarily shaped waveguides including lossy inhomo-
geneous anisotropic media. The materials are characterized by
simultaneous [:] and [p] full tensors. Complex-mode computa-
tion, spurious-mode suppression and the possibility of specifying
the frequency as an input parameter are also achieved. The
formulation leads to a quadratic eigenvalue problem of dimension
,V which is transformed into an efficient 21V-dimensional general-
ized eigensystem with sparse complex matrices. This eigensystem
is solved by the subspace method, takhtg full advantage of the
sparsity of the matrices. Permittivity and permeability tensors
with some null terms allow an additional reduction from the IV-
dimensional quadratic eigenvalue problem to a IV-dimensional
sparse complex generalized eigensystem. The proposed method
has been vatidated by analyzing different 10SSY,inhomogeneous
and anisotropic waveguides. Results show good agreement with
previously published data.

I. INTRODUCTION

R ECENTLY, the dispersion characteristics of microwave
and millimeter wave integrated circuits (MIC’s) involv-

ing anisotropic materials as substrates and superstrates have
sparked a growing interest in the field of applications for
nonreciprocal devices. Technological advances enable the in-
tegration of different materials into composite MIC structures
which results in nonreciprocal transmission effects. These
effects are well documented for some specific MIC’S [1].
Moreover, dielectric waveguides which employ anisotropic
materials play an important role as fundamental components
of optoelectronic and microwave devices. Consequently, some
efforts have been devoted to the analysis of different transmis-
sion lines on substrates characterized by [e] and/or [~] tensors
[2]-[14].

Most of such cases involve complex transversal shapes.
Because of this, they do not lend themselves to analytical
solutions. The finite element method (FEM), one of the most
flexible, widely used and powerful numerical methods, has
become an important tool for solving these kinds of structures.
In order to rigorously evaluate the propagation characteristics
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of 10SSYinhomogeneous anisotropic waveguides by means of
FEM, a vectorial wave analysis is required.

Existing FEM formulations, useful for analyzing complex

waveguide structures, were compared in [15] with regard to

different points of view. Features that should be stressed when

solving inhomogeneous anisotropic waveguides by FEM are

a) Capability of handling losses.

b) Ability to compute complex modes.

c) Possibility of solving arbitrarily shaped waveguides with
reentrant corners.

d) Ability to model simultaneous dielectric and magnetic
anisotropic materials.

e) Capability of handling full [E] and [K] tensors.
f) Spurious-mode suppression.

g) Matrix-sparsity of the resulting eigensystem.

h) Possibility of specifying the frequency as input param-

eter and solving for the propagation constant as eigenvalue

solution.

Most of the reported methods only partially fulfill these

requirements. In this way, the formulation proposed by Lu
et al. [7], [8] employs an accurate nodal element to analyze

waveguides with dielectric anisotropic tensor of the form
[e] = [e,,]+ E..22, with [et,] two-by-two symmetrical tensor.
This analysis leads to a sparse eigensystem which permits to

handle losses and complex modes. However, waveguides with
sharp edges rend the system non-convergent. Dillon et al. [9]
proposed a three component vector finite element formulation

where the permeability tensor has the form [w] = [fltt]+

U,Z2.2.In this case an eigenvalue problem with the phase
constant as eigenvalue is obtained. In [16] Lee developed an
edge-element-based method to analyze lossy inhomogeneous
isotropic waveguides with sharp edges. This method leads
to solving a generalized eigensystem with sparse matrices.
Hayata et al. proposed in [10] a formulation to study 10SSY
waveguides in which [e] may be a full tensor. Such a formul-
ation leads to a full-matrix eigensystem.

In all these methods, the frequency is specified as input

parameter and the eigensystem is solved for the propagation

constant. Other methods, such as the one suggested by Bardi
et al. in [11], solve a sparse eigensystem to obtain the
frequency as the eigenvalue. This formulation can model
waveguides with materials where full [s] and [~] tensors can
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exist simultaneously. However, losses and complex modes can

not be taken into account while four degrees of freedom in

each nodal point are used.
In this paper, a new FEM formulation is proposed to analyze

waveguides with materials where full [s] and [N] tensors
can exist simultaneously. This formulation leads to a sparse
complex quadratic eigenvalue problem of dimension IV (iV =
number of degrees of freedom) which is transformed into a
2N-dimensional sparse complex generalized form. In particu-
lar cases where the properties of the material can be expressed

as [c] = [&tt]+ezz% [P] = [d +1-M% with[4, [mtl two-
by-two tensors, the initial quadratic eigensystem is simplified
to a N-dimensional sparse complex generalized form.

In the method proposed in this paper, the frequency is

specified as an input parameter and the system is solved for
the complex propagation constant as eigenvalue. Therefore it
is possible to handle losses and to compute complex modes.

The method employs an edge element which suppresses
spurious solutions and is appropriate for solving arbitrarily
shaped waveguides including reentrant comers. Numerical

examples are presented to illustrate the different features of
the method as quoted in a)–h). Computed results agree well
with previously available data.

II. THEORETICALANALYSIS

Y

x

Fig. 1. General waveguide cross section.

with the boundary conditions expressed as

fix E(Vxfi)=O OnI’l

?Lxl%=o 0nr2 (4)

where

/c. is the free space wavenumber and ii is a unit vector in
the same plane of Q normal to the boundary 17 and directed ~
outwards (Fig. 1).

In this paper any material is typified, from the macroscopic Taking trial functions H and test functions ; in an admis-
point of view, by means of its characteristic bianisotropic sible space [17] and applying Green identities and vectorial
six-by-six tensor [ikf]. This tensor is expressed as manipulations to

[M] = [[j f]
1

where [e] = :OS and [p] = POP represent the permittivity and

the permeability, respectively, SOand ~. are the corresponding
values of free space, and

are the relative permittivity and permeability complex tensors.
Let us consider a lossy inhomogeneous anisotropic wave-

guide with arbitrary cross section Q in the z-y plane and with
bounday r as shown in Fig. 1. This boundary is either a
perfect electric conductor rl, a perfect magnetic conductor 17z

or a combination of both. It is assumed that the cross section
of the waveguide is uniform along the direction of propagation
(z axis). Maxwell equations, with the electromagnetic field in
the waveguide varying as e@-~ZJ, take the form

/[ GVx EVxfi-k@l?]dQ=O

the following expression can be derived

%(fi, ti) =– I @[iix m x fi] d’]
rl

/
+ Jzvxfl]”[fixadr2

where % (E, Z) is a bilinear form. By splitting the

functions II, the test functions ; and the operator V
their transverse and axial parts

8=&+Hz2

G=$t+wz?

V=vt–y;

(5)

trial

into

where, Vt = 28/8x + &?/~y, 23(E,@ can be expressed as

v x 2 = –jw/.LopIl

/
%(Ii, ‘ii) = [v, x Z&m, x Et+ -yGti?vt x Ii,

v x ii= jws(l=fi (2) Q

– Viwzi?vt x fit – Tvt x GtE’Ilt

where ~ = a +-j’/? is the complex propagation constant, a and
~ are the attenuation and phase constants, respectively, and w

– ‘y%i@?& + ‘yVtwzz’fit

is the angular frequency. The vectorial wave equation for the – Vt X tiLE’VtH, – yii#i7tH.

magnetic field, derived from Maxwell’s (2) is + Vtwzz’VtHz– &@t – I@wzPHz
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eyy —eyz eyz
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—e’zv

1

ezz —ezz .

ezy —ezz e==

Assuming that homogeneous boundary conditions are im-

posed as

?LXG=O on

and natural boundary conditions as

fixz(vxfl)=o

the equation (5) diminish to

r2

on r]

!Z3(R,IZ) = o (6)

H and ; are taken in the same admissible space of functions,
these being smooth enough for the variational problem (6) to
make sense and defined as

where ,C2(Q) is a set of equivalence classes of square-
integrable functions over Q.

III. FINITE ELEMENT DISCRETIZATION

Let us divide the waveguide cross section into a number
of triangular hybrid vector finite elements that combine edge
elements of degree one for the transverse components of the
magnetic field with first-order Lagrangian basis functions for
the longitudinal one, as proposed in [18]. The discretized
magnetic field in every element can be expressed as

where (Ni ) are the first-degree Lagrange polynomials
reference space (p, q) and

in the

~(i, j) = NiVNj – NjVNi = Tp(i, j);

+Tq(i, j);

is the vectorial basis function for edge (z, j).

In order to group all the terms that including any of the
factors ei,, e,i, ~%z,~Zt with z = x, y, the z-component of the
magnetic field is replaced by Hz = H: . ~. By discretizing the
expression in (6) and making both the trial and test functions
be the same, the following quadratic eigensystem is obtained

(’)’’u’fll + ‘-Y[~2] + [M’]) {H} = o. (7)

In this eigensystem {H} is

H:}
{H} = {:H,}

}

o P

Fig. 2. Shape of the sparse matrices of order P. The terms that would be
necessarv to store are indicated in black. The figure corresponds to [kf,l
matrices-for P = N and [11] and [M] for P = ~N. - ‘ “

and the [11~] are sparse, and generally complex and neither
Hermitian nor symmetrical N-by-N matrices given as

T, [Tll] [T5]
[Ml] = ~ [[ !~T,] -[T,]

e 1

[0] -[T3] - [Tl,] 1[J&]= ~ [-[Tg] - [T121
[T,] - [Tl]

e

0] [0]
[~3] = ~ [lo] [T,] - [TIo]

e
1

(8)

with [Tl] as given in Appendix. Notice that ills is a singular
matrix. The quadratic eigensystem (7) has been derived by

taking T as eigenvalue. A simplified generalized eigensystem
form can be deduced by considering k: instead of T as the

eigenvalue. However in this paper, the formulation in (7)
has been chosen in order to make the method applicable to
lossless waveguides with complex modes on the one hand
and to lossy ones on the other. Fig. 2 indicates the shape of
the [Al,] matrices in (7) when P = N. This was obtained by
applying the aforementioned discretization method to a typical
waveguide problem. The only terms that would be necessary
to store are indicated in black. They show the high sparsity
that is found in these matrices.

The quadratic eigenvalue problem (7) in terms of N-by-
N matrices [&fi], can be solved by reducing it to the standard
form by means of the inversion of a matrix. This process leads
to a standard eigensystem with 2N-by-2N full-matrices [10],
[19].

In this paper a different approach has been followed in order

to retain the sparse properties of the matrices. Let us suppose
that the quadratic eigensystem with N-by-N matrices in (7) is
expressed as the following equivalent generalized eigenvalue
problem with 2N-by-2N matrices

[lY]’{x}’ - ‘y[M]’{x}’ = o (9)

where

[0] [I]
[K]’ = [[M,] [M’] 1‘w’]’=M -IL]

(lo){xl’ = {[g]} ~= TH

It can be seen that the elements of [M!3] are far from the
diagonal of [K]’, forcing many elements of this matrix to be
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stored (assuming matrix storage to be in band form). To avoid

this drawback, it is advisable to convert the eigensystem to a
more efficient form.

Let us suppose the equations in (9) numbered as 1,2,
. . .. N. N+l, N+ 2,... 2N. A new eigensystem can be
obtained by reordering these equations as 1, N + 1,2,
N+ 2,... , N, 2N and substituting the vector {X}’ =
(q,%~, – –...,rn,xl,zz,... ,%) by {X} = (zI,z,,z2,
Zz,...,zn,zn ). After these manipulations the eigensystem (9)
is transformed into a new equivalent generalized eigenvalue
problem

[K]{x} - V[M]{X}= o (11)

where the band of the matrix [M] is slightly larger than the
one of [M]’ but where the band of the matrix [K] is drastically
smaller than the one of [K]’. Hence, only very few elements
of both matrices need be stored. In Fig. 2, with P = 2N, the
black area shows the storage requirements for the matrices [K]
and [M] in (11), as derived from the quadratic eigensystem
(7). It can be observed that the shape of the stored terms of
[K] and [k?] matrices in(11) is the same as the shape of the

[Afi] matrices in (7) but with a different scale. In fact, the

ratio between stored terms in [lfi] and [K] or [M] is the ratio

between the size of the matrices, i.e., 4. Notice that if the [lki!~]
matrices are hermitian or symmetrical, so are [K] and [~].

IV. PARTICULARCASES

Some particular cases exist in which the quadratic eigen-

system in (7) can be converted to a generalized eigenvalue

problem without loss of the sparshy and without changing

the size (~-by-~) of the matrices, The first, which is in ac-

cordance whh many microwave and millimeter-wave devices,

occurs when both 3 and D tensors can be expressed as

‘=F ~ Ii]‘“R’~’:21
In this case [Ti] = O, with i = 2,3,4,9,12,13, and [?vf2]= O
because ei. = e=i = pi. = p.i = O withi = x,y. As a
result, the quadratic eigenvalue problem in (7) is reduced to a

generalized eigensystem with 72 as eigenvalue and N-by-N
matrices.

A different situation takes place when the permeability and

permittivity tensors can be expressed in either diagonal or
scalar form. Then, the eigensystem in (7) is reduced to a
N-by-N generalized form with symmetrical matrices.

In all the cases described above, the generalized eigensystem
matrices will be complex if the = or D tensors are so, and
Hermitian or symmetrical if E and F tensors are so. Finally, it
should be pointed out that [Af3] is always a singular matrix.

V. RESOLUTION METHOD

The aforementioned generalized eigensystems have sparse,

singular, and in general complex matrices which are neither
Hermitian nor symmetrical. At present, no publicly available
routine can solve this kind of eigenvalue problem efficiently. In
this paper, a method based on the subspace iteration algorithm
[20], [21] has been implemented to solve the eigensystem.
In this algorithm a selected subset of desired eigenvalues
AS and eigenvectors ti, are obtained. This algorithm finds
an orthogonal basis in a vectorial subspace by means of an
iterative process [21 ]. At the end of the process, the following

eigensystem of projected operators is obtained

[k.]{zz} - A,[m.]{x,} = o.

It has been found that an optimum selection for the subspace
dimension is 2n where n is the number of desired eigenso-
lutions, The set of eigenvectors in the original space i7s are
calculated from {zS }. This algorithm has been used with both
N and 2N order matrices and with the sparsity of them fully
utilized.

VI. NUMERICAL EXAMPLES

In this section the proposed formulation is validated with

some examples. First the shielded microstrip transmission
line ‘in Fig. 3 is considered with A = 12.7 mm, dl =
1.27 mm, d2 = 11.43 mm, W = 1.27 mm, el = 8.875, PI =
1 and t R O. The figure shows the propagation constant of
even modes versus frequency. Dark circles represent the
results obtained with the proposed method. The broken,
dotted, and solid lines represent the results for the dominant,
higher-order, and complex modes, respectively, obtained by
the spectral domain method [22]. These kinds of problems,

with lossless, inhomogeneous and isotropic media, lead to

solving a generalized eigenvalue problem with N-by-N real
symmetrical matrices.

In the next example, a 10SSYanisotropic rectangular wave-
guide (Fig. 4) is analyzed. The permittivity is characterized by
the tensor e as shown in (12) at the bottom of the page, where

0 — 20.83 –j3.13, S~Z = 11.86 –jO.8,S~Z = 11.86 – jO.8, SYY–
and ~ is the rotation angle as Fig. 4 shows. The figure displays
the complex propagation constant versus rotation angle ~.
Dark circles represent the computed results in this work,

and the solid lines the results in [10]. These kinds of lossy

inhomogeneous anisotropic problems lead to solving a N-

dimensional generalized eigenvalue problem with complex and
symmetrical N-by-iV matrices.

In the above example only dielectric losses were included.
However, problems with conductor losses can be handled
in the same way. Conductors with conductivity c can be
modelled as Iossy media with imaginarj permittivity –jo/w.

Moreover, external boundary conductors should be considered
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4
even modes

-lo 15 20 25

frequency (GHz)

Fig. 3. Norrnahzed propagation constant versus frequency for a shielded
microstrip line. A = 12.7 mm, G?l= 1.27 mm, dz = 11.43 mm, W’ =
1.27 mm, el = 8.875, N1 = 1, aud t N O. (0*00) this work. (—, --
. . , ) [22].

thick enough so that zero-field boundary condition could be

applied in their outer side.
Fig. 5 shows the propagation characteristics at 20 GHz

versus slot width for the structure depicted” in the same
figure. The structure consists of conductors of finite tlickness
and stratified media. In it, A = 3 mm, dl = 1 mm, dz =
1 mm, d3 = 3 mm, t = 70 ~m, pl = l,sl = 1,s2 = 12.5, the
resonance line width AH = O, the magnetization of the ferrite

4n.Ms = 5000 G and the magnetic field Ho = 500 Oe with
femite magnetized in the y-direction. The permeability tensor
in the ferrite is defined by

[

0.951 0 jo.703

1F2= o 1 () .
–jo.703 o 0.951

To analyze this problem, it has been necessary to solve a
generalized eigenvalue problem with complex and Hermitian
2N-by-2N matrices. Dark circles show the results obtained by
applying the proposed method while solid and broken lines are

the results obtained with the spectral-domain approach [12].
It should be noted that forward and backward modes are not

degenerate.
The next example has been included to check the proposed

method in the analysis of a structure that hold non-null all
the terms of a permeability tensor. In Fig. 6 the propagation
prc)perties of a line printed between ferrite superstrata and
isotropic substrate are represented versus the angle @ of dc
tiel.d. As the ferrite is magnetized with a dc field having
an arbitrary direction, the terms of the permeability tensor
are, in general, ~~j # O W, j = $, y, z. The frequency of

analysis is 10 GHz, the angle 9 of dc field is 0 = 90°, dl =
0.2,54 mm, dz = 0.254 mm; W = 1.016 mm, EI = 12.9, ,u1 =
1,<:2 = 12.6, AH = O,47rMs = 2750 G and Ho = 275 Oe.

‘F==I!
4’L 4I

4° — ,,

& 3’L
. I,

4‘ ‘b: ‘

Y A+

2
C;y ~

+=
~ Po

x

10 & ;0 ‘2X
60 80

(a)

0“41====

(b)

Fig. 4. Normalized propagation constant versus rotation angle (de-
grees) for a rectangular waveguide filled with 10SSYanisotropic materiat.
B/A = 0.4454, koA = 4.5115. (a) Normalized phase constant. (b)
Normalized attenuation constant. (o ● ● ●) this work. (— ) [10].

In this case the permeability tensor for the ferrite is expressed

as in (13) shown at the bottom of the page, where P and K

can be obtained from the expressions in [23]. The computed

results are shown with dark circles in Fig. 6. They have been

compared with those obtained in [13] and [23]. The solid

and broken lines represent the forward and reverse solutions

in [13], respectively, and the dotted and broken-dotted lines

represent the solutions in [23]. It cart be seen that the FEM

solutions are closer to [23] than to [13]. In this case it was

necessary to solve a generalized eigensystem with complex

and Hermitian 2iV-by-2N matrices.

In the next example, a waveguide with materials character-

ized by both permittivity and permeability tensors is analyzed.

Fig. 7 shows the effective dielectric constant versus frequency

for a shielded microstrip line printed on a simultaneously

[

fl+(l-~)coszq$ –jK sin # (1 – p) sin @ cos fb
p2 = jK sin q5 –jfi Cos @

(1-p) sin#cosr# j~~sq$ 1 (13)

p+(l–~)sin2#
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Fig. 5. Normalized propagation constant versus slot width for a finline with
single-layered ferrite. A = 3 mm, dl = 1 mm, dz = 1 mm, ds = 3 mm,
t= 70pm, f = 20 GHz, pl = I,El = I,Ez = 12.5, AH = 0,4rrAKs =

5000 G, and Ho = 500 Oe. (o ● ● ●) this work. (—, --- -) [12].

FORWARD
1

cl PI
1-
dl

3.45*~,.,,,, .,, , ●

4°
\ 3.4 .+Ac~ARD “ ,,- .-.-.-:-.. .
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Fig. 6. Norrnatized propagation constant versus angle of magnetization in
the z-y plane, ~ (degrees), in a microstrip transmission line with anisotropic
superstrata. f = 10GHz, O = 90°, dl = 0.254 mm, dz = 0.254 mm,
W’ = 1.016 mm, c1 = 12.9, pl = 1,s2 = 12.6, AH = 0,4mLfs = 2750
Gand Ho= 275 Oe. (coo.) this work. (—, --- -) [13]. ( . . . ..–. –.)
[23].

anisotropic substrate. This substrate is characterized by

H
200

Z1 = O 2.35 0

00 3.50

[1
2.75 0 0

@l= () 2.25 0 .
005

The geometric data are O!l = 0.5 mm, dz = 4.884 mm, W =

0.5 mm, A = 4.318 mm, and t ~ O. The results obtained
by the present method are drawn with dark circles. They
are compared with those in [14]. This case was analyzed
by solving a generalized eigenvalue problem with real and
symmetrical N-by-N matrices.

To solve a geometry with a curved boundary, a circular
waveguide with a longitudinally concentric ferrite rod was

25 1 I \

A

Fig. 7. Phase constant versus frequency of a rnicrostrip line with anisotropic
substrate. dl = 0.5 mm, dz = 4.884 mm, W = 0.5 mm, A = 4.318 mm,
t ~ O, ~zz = 2., cYY=2.35, EZZ=3.5, pzz =2.75, pYv =2.25>pz. = 5.
(.. ● ●) this work. (—) [14].

oo~
0.1 rl otz 0.3

Fig. 8. Normalized phase constant for a circular waveguide with a longitu-
dinatly-magnetized concentric ferrite rod. c1 = 10, fcoro = 2.5133. (s ● c o)
this work. (—, --- -, – . –.) HE+I,I, HE-I,l, HE+I,I, respectively,
in [24].

analyzed. In this case the permeability is expressed as

[1P –j& o

7J2=j6po.

001

Fig. 8 shows the normalized phase constant versus ratio rl /rO
for the dominant mode with p/K a as parameter. The computed
results obtained by the present method are printed with dark
circles. Solid lines represent analytical results from [24]. This
problem produces a N-dimensional generalized eigenvalue
problem with complex and Herrnitian matrices.

In Table I the memory requirements and CPU times for
the examples analyzed herein are presented. The types of
eigensystems and matrices, as well as the number of unknowns
that have been utilized are also shown. These examples have
been analized using a HP 9000/730.

VII. CONCLUSION

A new finite element formulation for solving lossy inho-
mogeneous anisotropic arbitrarily shaped waveguides which



2458 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL,43, NO. 10, OCTOBER 1995

TABLE I
THEMEMORYREQUIREMENTS AND CPU TIMESONA HP 90001730

Example cm time Memory reqtired Number of Elgensystem

~1

Matrices
seg. per point Mbyte%’ UIdulowns

PIg.3 27.1 2.62 2356 Generafiied Real

Fig.4 25.2 1,34 1225 Generalized Complex

Fig.5 417.5 24.3 3221 Quadratic Complex

Fig.6 401.8 23.82 3082 Qaadratic Complex

Fig.7 45.8 4.U 2559 Generalized Real

Fig.8 54.5 5.58 2129 Generalized Complex

include materials with both full [~] and [~] tensors and reen-
trant corners, has been described. This formulation is spurious-
free and leads to a quadratic eigenvalue problem of dimension

N (N = number of degrees of freedom) further reduced to a

2N-by-2N generalized form retaining the sparse properties of

the matrices. In particular cases where [~] = [~tt] + ~ZZ22
and [~] = [pit] + ~ZZ52 the order of the matrices of the
generalized eigensystem can be reduced to N. A method based
on the subspace iteration algorithm was implemented in order
to solve the eigensystem with the sparsity of the matrices
being fully utilized. Numerical examples which illustrate the
different features of the method have been solved. Results
show good agreement to those reported by other authors.

APPENDIX

THE EXPLICIT FORM OF SUBMATRICES [T,]

The form of submatrices of [~,] in the text are given by

[T,] = ~ ezz[A]~[A] dp dq

,

[T,] = ~ [Z’]TIE:l][A] dp dq

e

[T,] = ~ [D]~[z:l][A] dp dq

c

[T,]= // [A] T[z:2][T] dp dq
.J.J
e

[T,] = /)’[D]T[Z;,][T] dp dq
JJ
e

[T,] = // [7’]T[E:t][T] dp dq
JJ
e

[7’7]= ~ [T]T[Z;,][D] dp dq

e

[T,]=] [D]T[z;t][D] dp dq

e

[T,] =// [A] T[F:2] [D] dp dq

[Tlo] = j Mm [i%] [q
e

e

dp dq

dp dq

[Tl,] = ~ k:[T]T[F,J[N] dp dq

e

[Tl,] =
[

~~[MT [iIs2] [T] dp @
e

where

[1]

[3

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[k,] = (k%) [~’s2]= (ezg - e.,.)

[Z*I=

[T] =
[1

(T,)

(T,)

P.Y

PYY1

[D]

[
[E:,]= ::;,
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