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Efficient Finite Element Analysis of
Waveguides with Lossy Inhomogeneous
Anisotropic Materials Characterized by

Arbitrary Permittivity and Permeability Tensors

Luis Valor and Juan Zapata

Abstract—This paper presents a new finite element formulation
for solving arbitrarily shaped waveguides including lossy inhomo-
geneous anisotropic media. The materials are characterized by
simultaneous {z] and [r] full tensors. Complex-mode computa-
tion, spurious-mode suppression and the possibility of specifying
the frequency as an input parameter are also achieved. The
formulation leads to a quadratic eigenvalue problem of dimension
N which is transformed into an efficient 2V -dimensional general-
ized eigensystem with sparse complex matrices. This eigensystem
is solved by the subspace method, taking full advantage of the
sparsity of the matrices. Permittivity and permeability tensors
with some null terms allow an additional reduction from the V-
dimensional quadratic eigenvalue problem to a N-dimensional
sparse complex generalized eigensystem. The proposed method
has been validated by analyzing different lossy, inhomogeneous
and anisotropic waveguides. Results show good agreement with
previously published data.

1. INTRODUCTION

ECENTLY, the dispersion characteristics of microwave

and millimeter wave integrated circuits (MIC’s) involv-
ing anisotropic materials as substrates and superstrates have
sparked a growing interest in the field of applications for
nonreciprocal devices. Technological advances enable the in-
tegration of different materials into composite MIC structures
which results in nonreciprocal transmission effects. These
effects are well documented for some specific MIC’s [1].
Moreover, dielectric waveguides which employ anisotropic
materials play an important role as fundamental components
of optoelectronic and microwave devices. Consequently, some
efforts have been devoted to the analysis of different transmis-
sion lines on substrates characterized by [e] and/or [y] tensors
[2}-[14].

Most of such cases involve complex transversal shapes.
Because of this, they do not lend themselves to analytical
solutions. The finite element method (FEM), one of the most
flexible, widely used and powerful numerical methods, has
become an important tool for solving these kinds of structures.
In order to rigorously evaluate the propagation characteristics
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of lossy inhomogeneous anisotropic waveguides by means of
FEM, a vectorial wave analysis is required.

Existing FEM formulations, useful for analyzing complex
waveguide structures, were compared in [15] with regard to
different points of view. Features that should be stressed when
solving inhomogeneous anisotropic waveguides by FEM are

a) Capability of handling losses.

b) Ability to compute complex modes.

¢) Possibility of solving arbitrarily shaped waveguides with
reentrant corners.

d) Ability to model simultaneous dielectric and magnetic
anisotropic materials.

) Capability of handling full [¢] and [] tensors.

f) Spurious-mode suppression.

g) Matrix-sparsity of the resulting eigensystem.

h) Possibility of specifying the frequency as input param-
eter and solving for the propagation constant as eigenvalue
solution.

Most of the reported methods only partially fulfill these
requirements. In this way, the formulation proposed by Lu
et al. [7], [8] employs an accurate nodal element to analyze
waveguides with dielectric anisotropic tensor of the form
[e] = [ext] + 2242, with [e4] two-by-two symmetrical tensor.
This analysis leads to a sparse eigensystem which permits to
handle losses and complex modes. However, waveguides with
sharp edges rend the system non-convergent. Dillon ez al. [9]
proposed a three component vector finite element formulation
where the permeability tensor has the form [u] = [ps] +
t--22. In this case an eigenvalue problem with the phase
constant as eigenvalue is obtained. In [16] Lee developed an
edge-element-based method to analyze lossy inhomogeneous
isotropic waveguides with sharp edges. This method leads
to solving a generalized eigensystem with sparse matrices.
Hayata ef al. proposed in [10] a formulation to study lossy
waveguides in which [¢] may be a full tensor. Such a formu-
lation leads to a full-matrix eigensystem.

In all these methods, the frequency is specified as input
parameter and the eigensystem is solved for the propagation
constant. Other methods, such as the one suggested by Bardi
et al. in [11], solve a sparse eigensystem to obtain the
frequency as the eigenvalue. This formulation can model
waveguides with materials where full [¢] and [] tensors can
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exist simultaneously. However, losses and complex modes can
not be taken into account while four degrees of freedom in
each nodal point are used.

In this paper, a new FEM formulation is proposed to analyze
waveguides with materials where full [¢] and [u] tensors
can exist simultaneously. This formulation leads to a sparse
complex quadratic eigenvalue problem of dimension N (N =
number of degrees of freedom) which is transformed into a
2N-dimensional sparse complex generalized form. In particu-
lar cases where the properties of the material can be expressed
as [e] = [ess] +€2282, (1] = [poe] + p122 22, with [es], [pr2e] two-
by-two tensors, the initial quadratic eigensystem is simplified
to a /V-dimensional sparse complex generalized form.

In the method proposed in this paper, the frequency is
specified as an input parameter and the system is solved for
the complex propagation constant as eigenvalue. Therefore it
is possible to handle losses and to compute complex modes.

The method employs an edge element which suppresses
spurious solutions and is appropriate for solving arbitratily
shaped waveguides including reentrant corners. Numerical
examples are presented to illustrate the different features of
the method as quoted in a)-h). Computed results agree well
with previously available data.

II. THEORETICAL ANALYSIS

In this paper any material is typified, from the macroscopic
point of view, by means of its characteristic bianisotropic
six-by-six tensor [M]. This tensor is expressed as

i)

where [¢] = o€ and [u] = poft represent the permittivity and
the permeability, respectively, £, and u, are the corresponding
values of free space, and

= [

Exx Exy Eaxz MPrx Hzy Mz
€= |€yz Eyy Eyz U= | fyzx Hyy Hyz D
Ezx €zy €zz Pzz Hzy Hzz

are the relative permittivity and permeability complex tensors.

Let us consider a lossy inhomogeneous anisotropic wave-
guide with arbitrary cross section £ in the z-y plane and with
boundary I' as shown in Fig. 1. This boundary is either a
perfect electric conductor I', a perfect magnetic conductor I'y
or a combination of both. It is assumed that the cross section
of the waveguide is uniform along the direction of propagation
(z axis). Maxwell equations, with the electromagnetic field in
the waveguide varying as e0“*=7?) take the form

VxE=- jw,uoﬁﬁ
V x H = jweogE 2)
where v = a+ j 3 is the complex propagation constant, « and
3 are the aitenuation and phase constants, respectively, and w
is the angular frequency. The vectorial wave equation for the
magnetic field, derived from Maxwell’s (2) is

V xeV x H - k¥pH =0 (3)
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Fig. 1. General waveguide cross section.

with the boundary conditions expressed as

AxeVxH)=0 onl
fAx H

=0 only @)
where
. €zz €xy Cxz
E=EF = |eyr €yy Eyz
€zz €zy €Ezz

ko is the free space wavenumber and 7 is a unit vector in
the same plane of §2, normal to the boundary I' and directed .
outwards (Fig. 1).

Taking trial functions H and test functions w in an admis-
sible space [17] and applying Green identities and vectorial
manipulations to

/w[VxEVxﬁ—kgﬁﬁ]dﬂzo
Q
the following expression can be derived

%(ﬁ,w):—/

Ty

@h x eV x H] dTy
+/ [eV x H]- [A x @] dTy (5)
T2

where B(H, @) is a bilinear form. By splitting the trial

functions H, the test functions w and the operator V into
their transverse and axial parts

ﬁ:ﬁt+Hz£’

'w:u"J't+'wz,2
V:Vt'—")’ﬁ’

where, V; = $8/0x + §0/0y, %(ﬁ , ) can be expressed as
B(H, o) = / [V X B8 Vy x Hy + 4@ V; x H,
Q
- Vthé’vt X _ﬁt - ’th X 'U-)’t—é,ﬁt
— ’)’Z’Iﬁt_é/ﬁt + ’thsz'ﬁt
_ Vt X thIVtHz — ’Vﬂ)‘t—é,thz
+ Vow, &'V H, — k20 5H, — k3w, GH,
— k2@ isH, — kiw,2pH,) dQ



2454
where
. €yy  —C€yz  Cyz
€ = | —€zy Eazx —€gz
€zy —€zx €zz

Assuming that homogeneous boundary conditions are im-
posed as

AxwW=0 OIIFQ

and natural boundary conditions as
Axe(VxH) =0 onTy
the equation (5) diminish to

B(H, &) =0 (©6)

I:i and w are taken in the same admissible space of functions,
these being smooth enough for the variational problem (6) to
make sense and defined as

C={v]3-Vyx v;€ L),

Vi, € {L2())2, 0 € {£2(2)}%}

where L£2(Q) is a set of equivalence classes of square-
integrable functions over £2.

III. FINITE ELEMENT DISCRETIZATION

Let us divide the waveguide cross section into a number
of triangular hybrid vector finite elements that combine edge
elements of degree one for the transverse components of the
magnetic field with first-order Lagrangian basis functions for
the longitudinal one, as proposed in [18]. The discretized
magnetic field in every element can be expressed as

{Hyy] [0 (Tp(i.5)

Py | [{Hzde
{Hybe | = | () (Ty(39))
{Hz}e <Nz> (0) l:{Ht}e]

where (NN;) are the first-degree Lagrange polynomials in the
reference space (p,q) and

T(i,5) = N;VN, — N;VN; = T, (i,5)p
+ T(I(ia .7 )E
is the vectorial basis function for edge (i, 7).

In order to group all the terms that including any of the
factors e;,, €4, Lz, thze With ¢ = x,y, the z-component of the
magnetic field is replaced by H, = H}, - . By discretizing the
expression in (6) and making both the trial and test functions
be the same, the following quadratic cigensystem is obtained

(V[My] +~[Ms] + [Ms])  {H} =0. Q)

In this eigensystem {H} is

asttol
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Fig. 2. Shape of the sparse matrices of order P. The terms that would be
necessary to store are indicated in black. The figure corresponds to [AM,]
matrices for P = N and [K] and [M] for P = 2N.

and the [M;] are sparse, and generally complex and neither
Hermitian nor symmetrical N-by-N matrices given as

[[Ts] — [T11 T
=3 _[ e —{[Tl]}
_y[ 0 - [T
[M;] = Ee: —[To] = [T1a]  [T3] — [T4] ]
o 0
=S|y ) ®

€

with [T,] as given in Appendix. Notice that M3 is a singular
matrix. The quadratic eigensystem (7) has been derived by
taking ~ as eigenvalue. A simplified generalized eigensystem
form can be deduced by considering k3 instead of v as the
eigenvalue. However in this paper, the formulation in (7)
has been chosen in order to make the method applicable to
lossless waveguides with complex modes on the one hand
and to lossy ones on the other. Fig. 2 indicates the shape of
the [M,] matrices in (7) when P = N. This was obtained by
applying the aforementioned discretization method to a typical
waveguide problem. The only terms that would be necessary
to store are indicated in black. They show the high sparsity
that is found in these matrices.

The quadratic eigenvalue problem (7) in terms of N-by-
N matrices [M;], can be solved by reducing it to the standard
form by means of the inversion of a matrix. This process leads
to a standard eigensystem with 2/N-by-2N full-matrices [10],
[19]. -

In this paper a different approach has been followed in order
to retain the sparse properties of the matrices. Let us suppose
that the quadratic eigensystem with N-by-N matrices in (7) is
expressed as the following equivalent generalized eigenvalue
problem with 2N-by-2N matrices

[K1{X} —~[M){X} =0 ©)

where

Il

K7 = ady i) =[] o)

or={1) 7o

It can be seen that the elements of [M3] are far from the
diagonal of [K], forcing many elements of this matrix to be

10
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stored (assuming matrix storage to be in band form). To avoid
this drawback, it is advisable to convert the eigensystem to a
more efficient form.

Let us suppose the equations in (9) numbered as 1,2,
o+ NN +1,N + 2,---2N. A new eigensystem can be
obtained by reordering these equations as 1,N + 1,2,
N + 2,---,N,2N and substituting the vector {X} =
(w17w27"'7$n5513527"'7ZEn> by {X} = <$1,fl,$2,
Eg, -+, Tn, Tn)- After these manipulations the eigensystem (9)
is transformed into a new equivalent generalized eigenvalue
problem

11

where the band of the matrix [M] is slightly larger than the
one of [M]' but where the band of the matrix [K] is drastically
smaller than the one of [K]'. Hence, only very few elements
of both matrices need be stored. In Fig. 2, with P = 2N, the
black area shows the storage requirements for the matrices [K]
and [M] in (11), as derived from the quadratic eigensystem
(7). Tt can be observed that the shape of the stored terms of
[K] and [M] matrices in (11) is the same as the shape of the
[M;] matrices in (7) but with a different scale. In fact, the
ratio between stored terms in [M;] and [K] or [M] is the ratio
between the size of the matrices, i.e., 4. Notice that if the [M;]
matrices are hermitian or symmetrical, so are [K] and [M].

(KX} - 7[MI{X} = 0

IV. PARTICULAR CASES

Some particular cases exist in which the quadratic eigen-
system in (7) can be converted to a generalized eigenvalue
problem without loss of the sparsity and without changing
the size (IN-by-N) of the matrices. The first, which is in ac-
cordance with many microwave and millimeter-wave devices,
occurs when both Z and 77 tensors can be expressed as

Exz  Exy 0 Hzz Hzy 0
E= |eyz &y O B= |tye Myy O
0 0 S 0 0 Hzz

In this case [T;] = 0, with £ = 2,3,4,9,12,13, and [M;] =0
because e;, = e,; = Wiy = WPy = O with ¢ = z,y. As a
result, the quadratic eigenvalue problem in (7) is reduced to a
generalized eigensystem with 2 as eigenvalue and N-by-N
matrices.

A different situation takes place when the permeability and
permittivity tensors can be expressed in either diagonal or
scalar form. Then, the eigensystem in (7) is reduced to a
N-by-N generalized form with symmetrical matrices.

In all the cases described above, the generalized eigensystem
matrices will be complex if the € or [i tensors are so, and
Hermitian or symmetrical if € and Tt tensors are so. Finally, it
should be pointed out that [M3] is always a singular matrix.
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V. RESOLUTION METHOD

The aforementioned generalized eigensystems have sparse,
singular, and in general complex matrices which are neither
Hermitian nor symmetrical. At present, no publicly available
routine can solve this kind of eigenvalue problem efficiently. In
this paper, a method based on the subspace iteration algorithm
[20], [21] has been implemented to solve the eigensystem.
In this algorithm a selected subset of desired eigenvalues
As and eigenvectors Us are obtained. This algorithm finds
an orthogonal basis in a vectorial subspace by means of an
iterative process [21]. At the end of the process, the following
eigensystem of projected operators is obtained

[ksl{zs} — Aslms[{zs} = 0.

It has been found that an optimum selection for the subspace
dimension is 2n where n is the number of desired eigenso-
Iutions. The set of eigenvectors in the original space v, are
calculated from {x,}. This algorithm has been used with both
N and 2N order matrices and with the sparsity of them fully
utilized.

VI. NUMERICAL EXAMPLES

In this section the proposed formulation is validated with
some examples. First the shielded microstrip transmission
line "in Fig. 3 is considered with A = 127 mm,d; =
1.27 mm,dy = 1143 mm, W = 1.27 mm,e; = 8.875, py =
1 and ¢ ~ 0. The figure shows the propagation constant of
even modes versus frequency. Dark circles represent the
results obtained with the proposed method. The broken,
dotted, and solid lines represent the results for the dominant,
higher-order, and complex modes, respectively, obtained by
the spectral domain method [22]. These kinds of problems,
with lossless, inhomogeneous and isotropic media, lead to
solving a generalized eigenvalue problem with N-by-N real
symmetrical matrices.

In the next example, a lossy anisotropic rectangular wave-
guide (Fig. 4) is analyzed. The permittivity is characterized by
the tensor ¢ as shown in (12) at the bottom of the page, where
e, = 11.86—j0.8,52y = 20.83 — §3.13,¢Y, = 11.86 — j0.8,
and 1) is the rotation angle as Fig. 4 shows. The figure displays
the complex propagation constant versus rotation angle .
Dark circles represent the computed results in this work,
and the solid lines the results in [10]. These kinds of lossy
inhomogeneous anisotropic problems lead to solving a N-
dimensional generalized eigenvalue problem with complex and
symmetrical N-by-N matrices.

In the above example only dielectric losses were included.
However, problems with conductor losses can be handled
in the same way. Conductors with conductivity o can be
modelled as lossy media with imaginary permittivity —jo /w.
Moreover, external boundary conductors should be considered

€d, cos? ¢+, sin® ¢ (e, —€yy) sin ¥ cos ¢

0
g=|(e, —€Y,) sin ¥ cos ¥ e, sin? PY+ed, cos?p 0
0

(12)
€2
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Fig. 3. Normalized propagation constant versus frequency for a shielded
microstrip line. A = 127 mm,d; = 127 mm,dy = 1143 mm, W =
1.27 mm,e; = 8.875,41 = 1, and ¢t ~ 0. (e ¢ @ @) this work. (——, - -
<o ) 1221,

thick enough so that zero-field boundary condition could be
applied in their outer side. _

Fig. 5 shows the propagation characteristics at 20 GHz
versus slot width for the structure depicted in the same
figure. The structure consists of conductors of finite thickness
and stratified media. In it, A = 3 mm,d; = 1 mm,d; =
1 mm,ds =3 mm,t =70 um, u; = 1,6y = 1,89 = 12.5, the
resonance line width AH = 0, the magnetization of the ferrite
47 Ms = 5000 G and the magnetic field Ho = 500 Oe with
ferrite magnetized in the y-direction. The permeability tensor
in the ferrite is defined by

0951 0 40.703
=] 0 1 0
—j0.703 0 0.951

To analyze this problem, it has been necessary to solve a
generalized eigenvalue problem with complex and Hermitian
2N-by-2N matrices. Dark circles show the results obtained by
applying the proposed method while solid and broken lines are
the results obtained with the spectral-domain approach [12].
It should be noted that forward and backward modes are not
degenerate.

The next example has been included to check the proposed
method in the analysis of a structure that hold non-null all
the terms of a permeability tensor. In Fig. 6 the propagation
properties of a line printed between ferrite superstrate and
isotropic substrate are represented versus the angle ¢ of dc
field. As the ferrite is magnetized with a dc field having
an arbitrary direction, the terms of the permeability tensor
are, in general, u;; # 0 Vi,j = z,y,2. The frequency of
analysis is 10 GHz, the angle 6 of dc field is § = 90°,d; =
0.254 mm, ds = 0.254 mm, W = 1.016 mm,e; = 12.9, 43 =
1,69 = 126, AH = 0,47 Ms = 2750 G and Ho = 275 Oe.
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Fig. 4. Normalized propagation constant versus rotation angle (de-
grees) for a rectangular waveguide filled with lossy anisotropic material.
B/A = 0.4454, koA = 4.5115. (a) Normalized phase constant. (b)
Normalized attenuation constant. (¢ ¢ ¢ ¢) this work. (—) [10].

In this case the permeability tensor for the ferrite is expressed
as in (13) shown at the bottom of the page, where u and x
can be obtained from the expressions in [23]. The computed
results are shown with dark circles in Fig. 6. They have been
compared with those obtained in [13] and [23]. The solid
and broken lines represent the forward and reverse solutions
in [13], respectively, and the dotted and broken-dotted lines
represent the solutions in [23]. It can be seen that the FEM
solutions are closer to {23] than to [13]. In this case it was
necessary to solve a generalized eigensystem with complex
and Hermitian 2N-by-2N matrices.

In the next example, a waveguide with materials character-
ized by both permittivity and permeability tensors is analyzed.
Fig. 7 shows the effective dielectric constant versus frequency
for a shielded microstrip line printed on a simultaneously

p+ (1= p) cos? ¢
jk sin ¢
(1 —p) sin ¢ cos ¢

Lo =

—jKk sin ¢

jk cos ¢

(1—p) sin ¢ cos ¢
u —JK CcOS ¢
pt (1 ) sin? @

13)
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Fig. 5. Normalized propagation constant versus slot width for a finline with
single-layered ferrite. A = 3 mm,d; = 1 mm,d> = 1 mm,ds = 3 mm,
t = 70pum, f = 20 GHz, 1 = 1,61 = 1,60 = 12.5, AH = 0,47Ms =

5000 G, and Ho = 500 Oe.(e ¢ o #) this work. (——, - - - -) [12].
sssk 0 — 7]
&y g W_ d
35 2F2— ¢t [92]
FORWARD
3.451,; ........ . 81 ’ILL] d 1__

i 3.4 -BACKWARD
o

3351 N

Y, Ho
g
33+
Z ~
3B 20 40 60 80

Fig. 6. Normalized propagation constant versus angle of magnetization in
the z-y plane, ¢ (degrees), in a microstrip transmission line with anisotropic
superstrate. f = 10GHz,0 = 90°,d; = 0254 mm,ds = 0.254 mm,
W = 1016 mm, e; = 12.9,p1 = 1,60 = 12.6, AH = 0,47 Ms = 2750
G and Ho = 275 Oc. (e @ @ 8) this work. (——, - - - =) [13]. (++ -+, — - —- )
[23].

anisotropic substrate. This substrate is characterized by

2 0 0
g1=10 235 0
i 0 3.50]
[2.75 0 T
=10 225 0
| 0 0 5]

The geometric data are d; = 0.5 mm,ds = 4.884 mm, W =
0.5mm, A = 4318 mm, and ¢+ ~ 0. The results obtained
by the present method are drawn with dark circles. They
are compared with those in [14]. This case was analyzed
by solving a generalized eigenvalue problem with real and
symmetrical N-by-N matrices.

To solve a geometry with a curved boundary, a circular
waveguide with a longitudinally concentric ferrite rod was
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Fig. 7. Phase constant versus frequency of a microstrip line with anisotropic
substrate. dy = 0.5 mm,dy; = 4.884 mm, W = 0.5 mm, 4 = 4318 mm,
T~ 0, €30 = 2,64y =2.35,62, = 3.5, oz =2.75, fiyy =2.25, 45, = 5.
(e ®ee) this work. (——) [14].
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Fig. 8. Normalized phase constant for a circular waveguide with a longitu-
dinally-magnetized concentric ferrite rod. £1 = 10, koro = 2.5133. (e 0 e s)
this work. ,--~~—+—-)HE1;:,HE_1 1,HE , ;, respectively,
in [24].

analyzed. In this case the permeability is expressed as

o —jk 0
Bo=jk p 0
0 0 1

Fig. 8 shows the normalized phase constant versus ratio r1 /7,
for the dominant mode with u /& a as parameter. The computed
results obtained by the present method are printed with dark
circles. Solid lines represent analytical results from [24]. This
problem produces a N-dimensional generalized eigenvalue
problem with complex and Hermitian matrices.

In Table I the memory requirements and CPU times for
the examples analyzed herein are presented. The types of
eigensystems and matrices, as well as the number of unknowns
that have been utilized are also shown. These examples have
been analized using a HP 9000/730.

VII. CONCLUSION

A new finite element formulation for solving lossy inho-
mogeneous anisotropic arbitrarily shaped waveguides which
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TABLE 1
THE MEMORY REQUIREMENTS AND CPU TiMes oN A HP 9000/730
Example CPU time Memory required | Number of | Eigensystem Matrices
seg. per point Mbytes unknowns

Fig.3 27.1 2.62 2356 Generalized Real

Fig.4 252 1.34 1225 Generalized Complex

Fig.5 417.5 24.3 3221 Quadratic Complex

Fig.6 401.8 23.82 3082 Quadratic Complex

Fig.7 458 4.12 2559 Generalized Real

Fig.8 54.5 5.58 2129 Generalized Complex

include materials with both full [¢] and [u] tensors and reen-
trant corners, has been described. This formulation is spurious-
free and leads to a quadratic eigenvalue problem of dimension
N (N = number of degrees of freedom) further reduced to a
2N-by-2N generalized form retaining the sparse properties of
the matrices. In particular cases where [g] = [ey] + £..32
and [p] = [pet] + p.-2% the order of the matrices of the
generalized eigensystem can be reduced to V. A method based
on the subspace iteration algorithm was implemented in order
to solve the eigensystem with the sparsity of the matrices
being fully utilized. Numerical examples which illustrate the
different features of the method have been solved. Results
show good agreement to those reported by other authors.

APPENDIX
THE EXPLICIT FORM OF SUBMATRICES [T,]

The form of submatrices of [T,] in the text are given by

T1 // 6~~ dp dq

[T10] // k1T [7[T) dp dg
(T3] = // K20 [NV V] dp dg

[T12] = //ko [Fi1][N] dp dg
[T13] // T[T dp dg

where

(1]

[2]

[3]

[4]

(51

[6]

(71

(8l

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

u

ma={e) wa={r )

/’Ls” </1'zxﬂz1/> [5/52] = <6Zy - €Z$>

_ | Hze  Huy =1 _ | Cyy  TCywr
(i) = [“yw Myy:l (€] = [_ery Coner }
dN,
[ _ %!
Sl P e
dq
B _joT, aT,
M=y = (- ).
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